Section 1.1 Square Roots of Perfect Squares
To determine the area of a square, we multiply the side length by itself. That is, we square the side length.

$$
\begin{aligned}
& \text { Area }=\text { side length } \\
&=\left(\frac{9}{10}\right)^{2} \\
&=\frac{9}{10} \times \frac{9}{10} \\
&=\frac{81}{10} \text { on nits } \\
& \text { and }
\end{aligned}
$$

To determine the side length of a square, we calculate the square root of its area.

$$
\begin{aligned}
\text { Side length } & =\sqrt{\text { Area }} \\
& =\sqrt{\frac{49}{81}} \\
& =\frac{7}{9} \text { units }
\end{aligned}
$$

$$
\frac{7}{9} \rightleftarrows
$$

Squaring and taking the square root are opposite, or inverse, operations.
The side length of a square is the square root of its area.
That is, $\sqrt{\frac{225}{100}}=\frac{15 \div 5}{10 \div 5}=\frac{3}{2}$ and $\sqrt{\frac{169}{100}}=\frac{13}{10}$
We can rewrite these equations using decimals:

$$
\sqrt{2.25}=1.5 \quad \text { and } \sqrt{1.69}=1.3
$$

The square roots of some fractions are repeating decimals.
Ex: $\sqrt{\frac{1}{9}}=\frac{1}{3}=0 . \overline{3}=0.3333 \ldots$.

A fraction in simplest form is a perfect square if it can be written as a product of two equal fractions.

$$
\begin{aligned}
& \frac{6 \div 6}{18 \div 6}=\frac{15}{3} \sigma \text { port. sq. cerf. } \quad \therefore \quad \frac{6}{18} \text { is not a perfect } \\
& { }_{89} \text {. }
\end{aligned}
$$

Example (1): Calculate the number whose square roots is:

a) $\frac{3}{8}$

b) $\quad 1.8$

$$
\sqrt{? 3}=1.8
$$

$$
(1.8)^{2}=1.8 \times 1.8=3.24
$$

Example (2): Is each fraction a perfect square? Explain your reasoning. * Simplest Form *
a) $\quad \begin{array}{r}8 \\ 18 \\ \div 2\end{array}$
b) $\frac{16}{5}$
c) $\frac{2}{9}$

No, $\frac{16}{5}$ is not pere. ss. Since
you cannot mull.

$$
\text { No, } \frac{2}{9} \text { is not }
$$

Yes $\frac{8}{18}$ is a serf. sq. 9
Since, $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}=\frac{8}{18}$
pert. Square. since you cannot
 to get $\frac{2}{9}$

Example (3): Is each decimal a perfect square? Explain your reasoning.
a) 6.25

$$
\sqrt{6.25}=2.5
$$

Yes 6.25 is a pert. sq. Since the sa. root is a Terminating decimal
b) 0.627

$$
\sqrt{0.627}=0.79183 \ldots
$$

0.627 is NoT a pelf.
square Since $\sqrt{0.627}$ is IRRATIonal.

