\qquad

Lesson 1.2: Square Roots of Non-Perfect Squares - Worksheet

1. Which numbers below are perfect squares? How do you know? xReduce fractions to
a) $\sqrt{\frac{16}{53}}$
b) $\sqrt{\frac{1}{25}}$
c) $\sqrt{0.009}$ Check for serf. sq x
$\sqrt{10.24}=3.2$ No

Yes because No!

$$
\frac{1}{5} \times \frac{1}{5}=\frac{1}{25}
$$

A number is a $\times \frac{1}{5}=\frac{1}{25}$
a_{2} number square if it is
two closet perf. sq's
a) $\sqrt{29.4}$
b) $\sqrt{0.41}$

$$
\sqrt{25}=5 \quad \sqrt{36}-6 /
$$

3. Use benchmarks to approximate each square root to the nearest tenth.

$$
\sqrt{{ }^{9}=3} \sqrt{\sqrt{11.6}}
$$

b) $\sqrt{0.39}$
c) $\sqrt{\frac{\pi}{2}}=\sqrt{\frac{\sqrt{3}}{1}}$
d) $\sqrt{\frac{11}{52}}=\sqrt{\frac{9}{49}}$

$$
\text { Since, } \sqrt{\frac{25}{1}}=\frac{5}{1}=5
$$

Since, $\sqrt{\frac{9}{49}=\frac{3}{7}}$ Then, $\sqrt{\frac{2}{2}} \div 5$ Then, $\sqrt{\frac{1}{52}}=\frac{3}{7}$

Check: $(0.63)^{2}=0.3969$
$(\sqrt{0.39}=0.63$

Check: $(0.44)^{2}=0.1936$

$$
\{00 \sqrt{0.20}=0.45\}
$$

4. Suppose the $\sqrt{ }$ key on your calculator is broken. Explain how you could use
your calculator to estimate $\sqrt{58.6}$ to the nearest tenth.
$\sqrt{58.6}$ is bigger than 7.5
So, check $(7.6)^{2}=57.76$

7
7.5

5. Use a calculator to approximate each square root to the nearest tenth.
a) $\sqrt{14.29}$
b) $\sqrt{\frac{15}{8}}$
c) $\sqrt{\frac{2}{19}}$
d) $\sqrt{0.7} \div 0.84$
$\doteq 3.79$

$$
\begin{aligned}
& =\sqrt{1.875} \\
& =1.37
\end{aligned}
$$

$\div 0.32$
6. In each triangle, determine the unknown length to the nearest tenth of a unit where necessary.
a)

$a^{2}+b^{2}=c^{2}$
$8^{2}+15^{2}=c^{2}$
$64+225=c^{2}$

$$
\sqrt{289}=\sqrt{c^{2}} c=17
$$

finding leg:

