\qquad

1.2 Squares and Square Roots - Notes

How can we determine if a number is a SQUARE NUMBER?

1. Find a division sentence for a number so that the quotient is equal to the divisor, the number is a square number.

2. We can also use factoring.

Factors of a number occur in pairs.
These are the dimensions of a rectangle.

Sixteen has 5 factors:
Since there is an odd number of factors, one rectangle is a Square. The square has a side length of \qquad units.

We say that 4 is a Square root 16 .
We write: $\sqrt{16}=4$

When we multiply a number by itself, we Square the number.
Squaring and taking the square root are inverse operations That is, they undo each other.

$$
\begin{array}{rlrl}
4^{2} & =4 \times 4 & \sqrt{16} & =\sqrt{4 \times 4} \\
& =16 & & =\sqrt{4^{2}} \\
& =4
\end{array}
$$

Examples:
\rightarrow of each number. multiply the 4 by itself

1. Find the square of each number.
a) 5^{2}
b) 15^{2}
c) 20^{2}

$$
\begin{aligned}
& =5 \times 5 \\
& =25
\end{aligned}
$$

$$
=15 \times 15
$$

$$
=20 \times 20
$$

$$
=225
$$

$$
=400
$$

2. Find the square root of each number.
a) $\sqrt{64}=\sqrt{8 \times 8}$
b) $\sqrt{100}$

$$
=\sqrt{8^{2}}
$$

$$
=\sqrt{10 \times 10}
$$

working backwards
$=\sqrt{10^{2}}$
$=10$
3. Find the number whose square root is:
$\sqrt{?}=q$
a) $9^{2}=81$
b) $5^{2}=25$
c) $7^{2}=49$
do inverse
operation
(Squaring)
H.W. (page: 15-16) \#5-9, 11, 13-17, 19

