Name: \qquad
1.6 Exploring the Pythagorean Theorem - Notes

Determine whether each triangle with the given side lengths is a right triangle.

$$
\begin{aligned}
& \text { C } \\
& \text { a) } 6 \mathrm{~cm}, 6 \mathrm{~cm} 9 \mathrm{~cm} \\
& \text { b) } 7 \mathrm{~cm}, 24 \mathrm{~cm}, \frac{(59}{5} \\
& a^{2}+b^{2} \stackrel{?}{=} c^{2} \\
& 6^{2}+6^{2} \stackrel{?}{=} q^{2} \\
& 36+36 \stackrel{?}{=} 81 \\
& 72 \neq 81 \\
& \therefore \text { NOT a right triangle. } \\
& \begin{array}{c}
a^{2}+b^{2} \stackrel{?}{=} c^{2} \\
7^{2}+24^{2} \stackrel{\stackrel{1}{=}}{=25^{2}} \\
49+576 \stackrel{?}{=}=625
\end{array} \\
& 625=625 \text { - } \\
& \therefore \text { it is a right triangle } \\
& \text { therefore }
\end{aligned}
$$

A set of whole numbers that satisfies the Pythagorean Theorem is called a
pythagorean triple
For example, 3-4-5 is a Pythagorean triple because $3^{2}+4^{2}=5^{2}$.

m . Gate measures the diagonal of the floor as 20 m . Is the angle between the two sides a right angle? Justify your answer.

\therefore The angle between the two sides are NOT a right angle.

$$
\begin{aligned}
a^{2}+b^{2} & \stackrel{?}{=} c^{2} \\
12^{2}+15^{2} & \stackrel{?}{=} 20^{2} \\
144+225 & \stackrel{?}{=} 400 \\
369 & =400
\end{aligned}
$$

