Lesson 1.6: Exploring the Pythagorean Theorem

1. Determine whether each triangle is a right triangle.

Justify your answers.
a)

$$
\begin{array}{rl}
a^{2}+b^{2} & ? \\
24^{2}+8^{2} & \stackrel{?}{=} 25^{2} \\
576+64 & \stackrel{?}{=} 625 \\
640 & \neq 625
\end{array}
$$

\therefore NOT a right triangle
2. Each set of measurements below represents the side lengths of a triangle.

Identify which triangles are right triangles.
How do you know?
a) $3 \mathrm{~cm}, 4 \mathrm{~cm}, 6 \mathrm{~cm}$
b) $7 \mathrm{~m}, 24 \mathrm{~m}, 25 \mathrm{~m}$

$$
\begin{aligned}
3^{2}+4^{2} & \stackrel{?}{=} 6^{2} \\
9+16 & \stackrel{?}{=} 36 \\
25 & \neq 36
\end{aligned}
$$

\therefore NOT a right triangle
c) $6 \mathrm{~cm}, 8 \mathrm{~cm}, 10 \mathrm{~cm}$

$$
\begin{array}{rr}
6^{2}+8^{2} \stackrel{?}{=} 10^{2} & 1^{2}+2^{2} \stackrel{?}{=}(\sqrt{5})^{2} \\
36+64 \stackrel{y}{=} 100 & 1+4 \stackrel{?}{=} 5 \\
\therefore \text { it IS aRT. } 100=100 & 5=5 \\
\text { e. } 2 \mathrm{~m}, 3 \mathrm{~m}, \sqrt{12} \mathrm{~m} & \therefore \text { it IS a R.T. } \\
2^{2}+3^{2} \stackrel{?}{=}(\sqrt{12})^{2} & \\
4+9 \stackrel{ }{=}=12 &
\end{array}
$$

d) $1 \mathrm{~m}, 2 \mathrm{~m}, \sqrt{5} \mathrm{~m}$
3. Which sets of numbers below are Pythagorean triples?
a) $20,21,29$

$$
\text { b) } 11,34,35
$$

c) 20, 99

$$
\begin{aligned}
& 20^{2}+21^{2} \stackrel{?}{=} 29^{2} \\
& 400+441 \stackrel{?}{=} 841 \\
& 841=841 \\
& \therefore \text { it IS aRT. }
\end{aligned}
$$

$$
11^{2}+34^{2}=35^{2}
$$

$$
121+1156 \stackrel{?}{=} 1225
$$

d) $3 0 \longdiv { 3 4 } 1 6$
\therefore NOLa R.T.

$$
\begin{gathered}
30^{2}+16^{2} \stackrel{?}{=} 34^{2} \\
900+256 \stackrel{?}{=} 1156 \\
1156=1156 \\
\therefore \text { it IS aRT. }
\end{gathered}
$$

4. Two numbers in a Pythagorean triple are 77 and 85 . Find the third number. What is " c "?

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
77^{2}+85^{2} & =c^{2} \\
5929+7225 & =c^{2} \\
\sqrt{13154} & =\sqrt{c^{2}} \\
c & =114.7
\end{aligned}
$$

5. A triangle has side length of $5 \mathrm{~cm}, \sqrt{96} \mathrm{~cm}$ and 11 cm .
a) Is this triangle a right triangle?
b) Do these side lengths form a Pythagorean triple? Explain.
a) $5^{2}+\sqrt{96}^{2}=11^{2}$
b) yes they do because they satisfy $a^{2}+b^{2}=c^{2}$

$$
121=121
$$

\therefore it IS a R.7.

