Name: \qquad
Lesson 2.1: What Is a Power?

1. Identify the base of each power.
a) 6^{3}
b) 2^{7}
c) $(-5)^{4}$
d) $\quad-7^{0}$

6
2 -5

2. Use repeated multiplication to show why 3^{5} is not the same as 5^{3}.

$$
\begin{aligned}
& 3^{5}=3 \times 3 \times 3 \times 3 \times 3=243 \\
& 5^{3}=5 \times 5 \times 5=125
\end{aligned}
$$

3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
4^{4}	4	4	$4 \times 4 \times 4 \times 4$	256
$(-10)^{3}$	-10	3	$-10 \times-10 \times-10$	-1000
$(-6)^{2}$	-6	2	-6×-6	36
1^{5}	1	5	$1 \times 1 \times 1 \times 1 \times 1$	1

4. Write each product as a power, then evaluate.
a) 6×6

$$
\begin{aligned}
& =6^{2} \\
& =36
\end{aligned}
$$

c) $10 \times 10 \times 10 \times 10$

$$
\begin{aligned}
& =10^{4} \\
& =10000
\end{aligned}
$$

e) $(-8)(-8)(-8)$

$$
=(-8)^{3}
$$

$$
=-512
$$

b) $3 \times 3 \times 3 \times 3 \times 3 \times 3$

$$
\begin{aligned}
& =3^{6} \\
& =729
\end{aligned}
$$

d) $-(8 \times 8 \times 8)$

$$
\begin{aligned}
& =-8^{3} \\
& =-512
\end{aligned}
$$

f) $-(-8)(-8)(-8)$

$$
\begin{aligned}
& =-(-8)^{3} \\
& =-(-512) \\
& =512
\end{aligned}
$$

5. Write each power as repeated multiplication, then evaluate.

$$
\begin{aligned}
& \text { a) } \left.\begin{array}{l}
7^{5} \\
=7 \times 7 \times 7 \times 7 \times 7 \\
=16807
\end{array} \right\rvert\, \begin{array}{l}
\text { b) } \\
=4 \times 4 \times 4 \times 4 \\
=4096
\end{array}
\end{aligned}
$$

$=4 \times 4 \times 4 \times 4 \times 4 \times 4$
c) -9^{3}

$$
\begin{aligned}
&=-(9 \times 9 \times 9) \\
&=-(729) \\
&=-729
\end{aligned}
$$

6. Evaluate each power. For each power: $-6^{5}=-(6 \times 6 \times 6 \times 6 \times 6)=-(7776)$

- Are the brackets needed?
- Are the brackets needed? $=-7776$
- If your answer is yes, what purpose do the brackets serve? $=-7776$
d) $\left(-6^{5}\right)$
brackets yes!
indented ned to
in ty a negative base.

$$
\begin{aligned}
& \text { 7. Predict whether each answer is positive or negative, then evaluate } \\
& \begin{array}{l}
\text { a) }(-3)^{2} \\
=(-3)(-3) \\
=9 \\
=(-3)(-3)(-3) \\
=-27 \\
=-(3 \times 3) \\
=-2 \\
=-(9) \\
=-(9) \\
=-9 \\
=-9
\end{array}\left\{\begin{array}{l}
\text { d) }-(-3)^{3} \\
=-(-3 \times-3 \times-3) \\
=-(-27) \\
=-27
\end{array}\right.
\end{aligned}
$$

8. Is the value of -2^{4} different from the value of $(-2)^{4}$? Explain.

Yes because with -2^{4} the negative is applied to the whole power, with $(-2)^{4}$ the negative is applied to the base.

$$
\begin{aligned}
& \text { applied to the base. } \\
& -2^{4}=-(2 \times 2 \times 2 \times 2)=-(16)=-16 \quad(-2)^{4}=(-2)(-2)(-2)(-2)=16 \\
& \text { 9. Stamps are sold in a } 10 \text { by } 10 \text { sheet. The total value of a sheet of stamps is } \$ 60.00
\end{aligned}
$$

9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is $\$ 60.00$.
a) Express the number of stamps as a power and in standard form.

$$
\begin{aligned}
& 10 \times 10 \\
= & 100 \text { (standard form). } \\
= & 10^{2} \text { (power) }
\end{aligned}
$$

b) Draw a picture to represent this power.

c) What is the value of one stamp?

$$
60 \div 100=\$ 0.60 / \text { stamp }
$$

