Unit 1: Powers and Exponents

Name: _____

Lesson 2.1: What Is a Power?

- **1.** Identify the base of each power. **b**) 2⁷ **c**) $(-5)^4$ **d**) -7^{0} **a**) 6³ 6 2 -5
- **2.** Use repeated multiplication to show why 3^5 is not the same as 5^3 .

3. Complete this table.

Power	Base	Exponent	Repeated Multiplication	Standard Form
44	Ч	4	4x4x4x4	256
$(-10)^3$	-10	3	-10x-10x-10	- 1000
(-6)	-6	2	-6x-6	ち
5	l	5	$1\times1\times1\times1\times1$	

Write each product as a power, then evaluate 4.

a) while each product as a power, then evaluate:
a)
$$6 \times 6$$

 $= 36$
 $= 36$
 $= 36$
 $= 100 \times 10 \times 10 \times 10$
 $= 10000$
 $= (-8)^{-8}(-8)$
 $= (-8)^{-8}(-8)$
 $= (-8)^{-8}(-8)$
 $= (-8)^{-8}(-8)$
 $= -512$
 $= -512$
 $= -512$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)^{-8}(-8)$
 $= -(-8)^{-8}(-8)^{-8}(-8)^{-8}(-8)^{-8}(-8)^{-8}$

l

6. Evaluate each power. For each power:
$$-\binom{5}{6} = -\binom{6\times6\times6\times6\times6}{6\times6} = -\binom{7776}{7776}$$
• Are the brackets needed?
• If your answer is yes, what purpose do the brackets serve?
a) $(-6)^5$
= $(-6)^{-6}(-6)^$

- 8. Is the value of -2⁴ different from the value of (-2)⁴? Explain. Yes because with -2⁴ the negative is applied to the whole power, with (-2)⁴ the negative is applied to the base. -2⁴=-(2x2x2x2)=-(16)=-16/(-2)⁴=(-2X-2X-2X-2)=16
 9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is \$60.00.
- 9. Stamps are sold in a 10 by 10 sheet. The total value of a sheet of stamps is \$60.00.
 a) Express the number of stamps as a power and in standard form.

b) Draw a picture to represent this power.

c) What is the value of one stamp?