\qquad
2.4 Exponent Laws I

Exponent Law for Product of Powers
To multiply powers with the same base add the exponents.

$$
a^{m} \times a^{n}=a^{m+n}
$$

negative exponent un To div ide
is NOT To divide powers with the a part of the

Same base subtract the base exponents.

$$
a^{m} \div a^{n}=a^{m-n}
$$

Write each expression as a power.
a) $6^{2} \times 6^{4}$

$$
=6^{2+4}
$$

$$
=6^{6}
$$

$$
\begin{aligned}
& \text { b) } \begin{array}{l}
(-9)^{7} \div(-9)^{6} \\
=(-9)^{7-6} \\
=(-9)^{1} \\
=(-9)
\end{array} \text { = }=\text { = }
\end{aligned}
$$

Example (2): Evaluating Expressions Using Exponent Laws

Evaluate.
b) $3^{4} \times 3^{5} \div 3^{3}$

$$
\begin{aligned}
& =(-2)^{8} \\
& =258
\end{aligned}
$$

$$
=3^{9}: 3^{3}
$$

$$
=3^{6}
$$

$$
=729
$$

Example (3): Using Exponent Laws and the Order of Operations

Evaluate.
a) $6^{3}+6^{2} \times 6^{5}$

$$
\begin{aligned}
& =6^{3}+6^{7} \\
& =216+279936 \\
& =280152
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { b) }(-10)^{3}\left[(-10)^{5} 5-(-10)^{2}\right]-10^{7} \\
= \\
= \\
\\
(-10)^{3}\left[(-10)^{3}\right]-10^{7} \\
= \\
= \\
=100)^{6}-10^{7} \\
= \\
=
\end{array}-90000000000000
\end{aligned}
$$

