Unit 4: Linear Relations

4.2 Linear Relations Notes

<u>Example</u>: The first 4 rectangles in a pattern are shown below. The pattern continues.

Each small square has side length 1 cm.

Rectangle 1	Rectangle 2	Rectangle 3	Rectangle 4

The perimeter of the rectangle is related to the rectangle number.

We can use <u>words</u>, a <u>table</u>, a <u>graph</u>, and an <u>equation</u> to represent this relationship. Each representation tell us about the relationship between the rectangle number and its perimeter.

In Words: The perimeter is two times the rectangle number Plus Four.

In a Table:

Antiport T		<u>ou</u> r iper	
	Rectangle	Perimeter,	ريم
	Number,	P (cm)	
	n		
. 1 _		(S	
+)(9	D+9
+10	6	, %	
+1 ~	, بر	10,)+2
" (1 2	14
	7	1 01	
			7

b = 90+A

Change in the rectangle

number produces a

Constant change in the

perimeter.

Vumerical
(vefficient
(attached to
independent variable).

This table represents a

linear relation; a constant

In a Graph: Perimeter 12 (dependent Variable) 10 8 4 2 Rectangle Number (independent variable)

The graph shows the pattern.

After the first point, each point is

1 unit right and 2 units up

from the preceding point.

We do not join the points because the data are discrete.

Continous data - join the points ex: time, measurement, speed

In an Equation:

P=2n+4

The value of the variable P depends on the value of the variable n.

We say that P is the dependent variable and we plot it on the vertical axis. (y-axis)

The independent variable n is plotted on the horizontal axis. (X-axis)

When two variables are related, we have a **relation**

Definition: When the graph of the relation is a straight line, we have a **LINEAR RELATION**.

In a linear relation, a constant change in one quantity produces a constant change in

the related quantity.