Unit 6: Linear Equations

Name:		
manic.		

6.5 Solving Linear Inequalities by Using Multiplication and Division

Investigate

In the patterns below, each side of the inequality 12 > 6 is multiplied or divided by the same non-zero number.

Multiplication Pattern	Division Pattern
12 > 6	12 > 6
12(-3) $6(-3)$	$12 \div (-3) \qquad 6 \div (-3)$
-36 < -18	-4 \(\ -2 \)
12(-2) 6(-2)	$12 \div (-2)$ $6 \div (-2)$
-24 < -12	- 6 4 -3
12(-1) 6(-1)	$12 \div (-1) \qquad 6 \div (-1)$
-12 4 -6	-12 4 - 6
12(1) 6(1)	$12 \div (1) \qquad 6 \div (1)$
12 > 6	12 > 6
12(2) 6(2)	$12 \div (2) \qquad 6 \div (2)$
24 > 12	6 > 3
12(3) 6(3)	$12 \div (3) \qquad 6 \div (3)$
36 > 18	4 > 2

Note

Example (1): Solve each inequality Graph each solution.

a)
$$-5x \le 25$$

2 6 4 8 6 10 11 15 Catuatraturamananana

e)
$$-2.6x + 14.6 > -5.2 + 1.8x$$

- 1.8x

$$\frac{-4.4x}{-4.4}$$
 > $\frac{-19.8}{-4.4}$

b)
$$7a < -21$$

$$7$$

$$a < -3$$

$$d) \frac{k}{3} \stackrel{\times}{\geq} -2 \stackrel{\times}{}^{3}$$

f)
$$\frac{x^6}{5 - \frac{2}{3}x} \ge \frac{1}{6}x + \frac{4}{1} \times 6$$

$$\frac{30}{6} - \frac{4}{6}x \ge \frac{1}{6}x + \frac{24}{6}$$

$$30-4x \ge 1x + 24$$

 $-1x - 1x$

$$30(-5x) \ge 24$$

$$\frac{-5x \ge -6}{-5} \quad \boxed{\chi \le 1.2}$$

- **Example (3):** A super-slide charges \$1.25 to rent a mat and \$0.75 per ride. Hank has \$10.25. How many rides can Hank go on?
- a) Choose a variable, then write an inequality to solve this problem.

$$r = \# of \ rides$$
 $1.25 + 0.75r \leq 10.25$

b) Solve the problem.

1.25
$$\pm 0.75r \le 10.25$$

 -1.25
 -1.25
 $0.75r \le 9$
 0.75
 0.75
 1.25

c) Graph the solution.

<u>Note</u>: This data is discrete. You cannot go on part of a rick