\qquad
7.3 Similar Polygons - Notes

When one polygon is an enlargement or reduction of another polygon, we say the polygons are Similar. Similar polygons have the Same shape, but not necessarily the same \qquad Size

Here are two similar pentagons.

$$
\begin{aligned}
& \angle P=\angle P^{\prime}=90^{\circ} \\
& \angle Q=\angle Q^{\prime}=154^{\circ} \\
& \angle R=\angle R^{\prime}=96^{\circ} \\
& \angle S=\angle S^{\prime}=110^{\circ}
\end{aligned}
$$

Matching angles are Corresponding angles
Matching sides are Corresponding sides

$$
\begin{aligned}
& \frac{P Q}{P^{\prime} Q^{\prime}}=\frac{\text { We list the corresponding angles and the }}{Q^{\prime} R^{\prime}}=\frac{R S}{R^{\prime} S^{\prime}}=\frac{S T}{S^{\prime} T^{\prime}}=\frac{T P}{T^{\prime} P^{\prime}} \\
& \frac{2}{3}=\frac{1.5}{2.25}=\frac{2.5}{3.75}=\frac{2.5}{3.75}=\frac{3}{4.5} \\
& 0 . \overline{6}=0 . \overline{6}=0 . \overline{6}=0 . \overline{6}=0 . \overline{6}
\end{aligned}
$$

Since, corresponding angles are equal and corresponding sides are proportional the pentagons are similar. PQRST ~P'Q'R'S'T'

Properties of Similar Polygons
When two polygons are similar:

1. their corresponding angles are equal AND
2. their corresponding sides are proportional

It is also true that if two polygons have these properties, then the polygons are similar.

1. $\angle A=\angle P$ Quadrilateral ABCD ~ Quadrilateral PQRS

$$
\angle B=\angle Q
$$

$$
\angle C=\angle R
$$

$$
\angle D=\angle S
$$

$$
\text { 2. } \begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CD}}{\mathrm{RS}}=\frac{\mathrm{DA}}{\mathrm{SP}} \\
& \frac{1.5}{2.1}=\frac{3}{4.2}=\frac{3}{4.2}=\frac{2}{2.8} \\
& 0.71=0.71=0.71=0.71
\end{aligned}
$$

*Corresponding Sides are proportional

Example (1):
Identify pairs of similar rectangles. Justify the answer.
Compare 1 and 2
$\frac{A B}{M N}=\frac{B C}{\mathrm{KM}}$

E
(3)

Compare 2 and 3 Since,
$0 \angle J=\angle E$

$$
\left\{\begin{array}{l}
\angle J=\angle L \\
\angle N=\angle H \\
\angle M=\angle G \\
\angle K=\angle F
\end{array}\right.
$$

$$
\frac{A B}{H G}=\frac{B C}{F G}
$$

$$
\frac{8.5}{8.4}=\frac{2.5}{2.4}
$$

$\frac{M N}{H_{5}}=\frac{k M}{f G}$ Compare 1 and 3
$1.62 \neq 1.6 \ldots$ not proportional
$1.01 \neq 1.04$... not proportional

$$
0.625=0.625 \ldots \text { proportional }(i)
$$

Example (2):
a) Draw a larger pentagon that is similar to this pentagon.
b) Draw a smaller pentagon that is similar to this pentagon.

Explain why the pentagons are similar.
a) $S . F=1.2$
$2.0 \mathrm{~cm} \times 1.2=2.4 \mathrm{~cm}$
$4.0 \mathrm{~cm} \times 1.2=4.8 \mathrm{~cm}$
$2.8 \mathrm{~cm} \times 1.2=3.4 \mathrm{~cm}$

b) use $s . f=0.5$

Example (3): These two octagonal garden plots are similar.
a) Calculate the length of GH
b) Calculate the length of NP.

 $\frac{8.1 x}{8.1}=\frac{174.96}{8.1}$

$$
\frac{5.4 y}{5.4}=\frac{218.7}{5.4}
$$

$x=21.6 \leftarrow$ make sure your reasonable

