Grade 8 Math: Unit 4 PRACTICE ASSIGNMENT Name:

\qquad
Part A: Selected Response. Place the correct answer on the space provided. (10 marks)

1) A right circular cylinder has a diameter of 12 cm and a height of 24 cm , as shown. Using $\pi=3.14$, what is the volume of the right circular cylinder, to the nearest cubic centimeter?
1. \qquad $V=A h$
a) 1356
b) 2713
c) 5426
d) 10852

$=(3.14 \times 36) \times 24$
$=2712.96$

2) The diagram below shows a right rectangular prism (not to scale).
2. \qquad
Dimensions are in centimeters. What is the surface area of the right rectangular prism?
a) $1012 \mathrm{~cm}^{2}$
b) $1208 \mathrm{~cm}^{2}$
c) $1096 \mathrm{~cm}^{2} \mathrm{H}_{10}$

3) What 3-D figure will this net create when it is folded?
3. \qquad
a) Rectangular prism
b) Cube
c) Square
d) Triangular prism

4) How many of the diagrams shown are nets for a cube?
4. \qquad No gaps or overlaps

a) 8
b) 9
(c) 10

5) Which diagram is the net of a cylinder?

B)

6. What is the volume of the prism shown?
7. \qquad

$$
\text { Area }=20 \mathrm{~mm}^{2}
$$

7. A shipping company uses large crates to ship certain items. A diagram of one of the crates is shown. The volume of the crate is 72 cubic feet. What is the height, in feet, of the crate?

8. The cube shown has a volume of $125 \mathrm{~cm}^{3}$. What is the area, $\mathrm{in} \mathrm{cm}^{2}$, of the base of the cube?
a) 15

9. Which of the following rectangular prisms has the greatest volume?

b)
c) Prism C having dimensions $6 \mathrm{~m} \times 0.25 \mathrm{~m} \times 6 \mathrm{~m}=\mathrm{am}^{3}$
d) Prism D having dimensions $15 \mathrm{~m} \times 0.2 \mathrm{~m} \times 2.5 \mathrm{~m}=7.5 \mathrm{~m}^{3}$
10. Bonnie has two rectangular boxes. All the dimensions of box 1 are twice as big as the corresponding dimensions of box 2 . How many times greater is the volume of box 1 than the volume of box 2 ?
a) 2

Box 2: 1-2-3 $\quad \mathrm{v}=6 \mathrm{~cm}^{3}$
Box 1: 2-4-6 $\quad v=48 \mathrm{~cm}^{3}$
b) 4

Part B: Constructed Response. Answer all questions in the space provided. Show all workings.

1) Find the volume of the prism below

$$
1 \text { m }
$$

$$
\begin{aligned}
& V=A h \\
& =\left(\frac{b h}{2}\right) \times h^{6} \\
& =\left(\frac{4 \times 3.5}{2}\right) \times 11 \\
& \begin{array}{l}
=7 \times 11 \\
=77 \mathrm{~m}^{3}
\end{array} \\
& \begin{array}{l}
\text { (2 marks) } \\
\text { distance betwenges bis triangle }
\end{array} \\
& \begin{array}{l}
\text { *units are } \\
\text { important. }
\end{array}
\end{aligned}
$$

2. The diagram below shows a right triangular prism. Dimensions are in cm . (3 marks) What is the surface area of this prism in square cm ?

$$
\begin{aligned}
& =192+112+140+84 \\
& =528 \mathrm{~cm}^{2}
\end{aligned}
$$

3. a) Michael wants to paint the walls of his rectangular room. His room is $8 \mathbf{L}$ long, 4 m wide and 5 m high. What is the total surface area that he needs to paint?

$$
\begin{aligned}
& =[2 \times 8 \times 5]+[2 \times 4 \times 5] \\
& =80+40 \\
& =12 \mathrm{~m}^{2}
\end{aligned}
$$

b) If a 3 L can of paint covers approximately 25 square meters of wall, how many cans of paint are needed to paint the walls of Michael's room, with one coat only? (1 mark)

$$
120 \div 25=4.8
$$

4. The Grade 8 students at a junior high school are building a playground for the local community center. They construct a sandbox with dimensions 2 m by 3 m by 35 cm in the shape of a rectangular prism.
a) What is the total volume (in cubic centimetres) of sand needed to fill the sandbox?

$$
\begin{aligned}
V & =A h \\
& =(\text { (xw }) \times h \\
& =(2 \times 3) \times 35 \\
& =210 \mathrm{~m}^{3}
\end{aligned}
$$

NOTREOURZD
A local supplier has donated sand in $10000 \mathrm{~cm}^{3}$ bags. How many bags are needed to fill the sandbox?
(1 mark)
5. A right circular cylinder has a radius of 8 cm and a length of 15 cm . What is the surface area of the right circular cylinder to the nearest square cm ?
(3 marks)

