Grade 7 Math Test
Unit 5 Operations with Fractions
Name: \qquad
Part A: Multiple Choice. Circle the best answer.

1. Which addition statement best represents the model below?

7N5.1

A. $1+1=2$
B. $\frac{1}{2}+1=\frac{3}{2}$
C. $\frac{1}{3}+1=1 \frac{1}{3}$
D. $\frac{1}{3}+\frac{2}{2}=\frac{2}{3}$
2. What is the answer to $\frac{3}{10}+\frac{3}{10}$ in lowest terms?
2.

7N5.2
A. $\frac{0}{10}$
$=\frac{6 \div 2}{10 \div 2}$
B. $\frac{3}{10}$
$=\frac{3}{5}$
C. $\frac{6}{10}$
D. $\frac{3}{5}$
3. Find a common denominator for the fractions $\frac{1}{5}$ and $\frac{2}{3}$.
3.

A. 3

7N5.3
mut of $5: 5,10$ (15) $20, \ldots$
C. 8
molt of $3: 3,6,9,12$ (15) \ldots

4. What is $\frac{6}{18}$ written in lowest terms?
A. $\frac{6}{18}$
B. $\frac{3}{9}$

$$
\frac{6 \div 6}{18 \div 6}=\frac{1}{3}
$$

7N5.4
C. $\frac{1}{3}$
D. $\frac{1}{2}$
5. Add $\frac{2}{3}+\frac{5}{9}$. Reduce your answer if necessary.

$$
\frac{2 \times 3 \times 3}{3 \times 3}+\frac{5}{9}=\frac{6}{9}+\frac{5}{9}=\frac{11}{9}=1 \frac{2}{9}
$$

5.

6.

A. 2

7N5.8
B. 0
C. $\frac{2}{0}$
D. $\frac{2}{9}$
7. If Samantha eats $\frac{2}{3}$ of the pizza and Devon eats $\frac{1}{4}$ of the pizza,
 how much more pizza does Samantha eat than Devon?
A. $\frac{2}{3}$
B. $\frac{5}{12}$
C. $\frac{1}{1}$
D. $\frac{4}{12}$
8. If Sandra drinks $1 \frac{3}{4} L$ of Crystal Lite and then drinks $2 \frac{2}{3} \mathrm{~L}$
8.
 of milk, what is the total amount of liquids that she drank?
A. 4 L
B. 3 L
C. $3 \frac{5}{12} \mathrm{~L}$
D. $4 \frac{5}{12} \mathrm{~L}$

$$
\begin{aligned}
& \text { Haquids.saxts.c.canik? } 2 \times 4 \\
& 1 \frac{3 \times 3}{4 \times 3}+2 \frac{2}{3 \times 4} \\
&= 1 \frac{9}{12}+2 \frac{8}{12} \\
&= 3+\frac{17}{12} \\
&= 3+1 \frac{5}{12}
\end{aligned} \quad=4 \frac{5}{12}
$$

9. What is $2 \frac{7}{8}-1 \frac{1}{4}$? Reduce your answer if necessary.
10.

A. $x_{\frac{1}{8}}^{2} \quad \frac{23}{8}-\frac{5 \times 2}{4 \times 2}=\frac{23}{8}-\frac{10}{8}=\frac{13}{8}=1 \frac{5}{8}$
B. $1 \frac{3}{2}$
C. $1 \frac{5}{8}$
D. $1 \frac{2.5}{4}$
10. What addition equation best represents the model below?

A. $1 \frac{3}{4}+1 \frac{3}{8}=3 \frac{1}{8}$
B. $1 \frac{3}{4}+1 \frac{3}{8}=2 \frac{1}{8}$

又 $4 \frac{3}{4}+8 \frac{3}{8}=12 \frac{1}{8}$
又. $4 \frac{3}{4}+8 \frac{3}{8}=12 \frac{6}{12}$

Part B: Complete all questions and be sure to show all your workings.

1. Use model of your choice to find each solution. State the answer.
(4 marks)

7N5.7
A) $\frac{3}{8}+\frac{1}{4} \times 2$
$=\frac{3}{8}+\frac{2}{8}$
$=\frac{5}{8}$

2. Calculate each answer. Reduce your answer if necessary.
B) $2 \frac{2}{x^{2}}-1 \frac{1}{6}$
$=2 \frac{4}{6}-1 \frac{1}{6}$
$=1 \frac{3 \div 3}{6 \div 3}$

(3 marks)
A) $\frac{1}{6}+\frac{2}{6}$

$$
=\frac{3 \div 3}{6 \div 3}
$$

7N5.2
\&
7N5.6

$$
\text { B) } \begin{aligned}
& \frac{5}{12}-\frac{x^{2}}{6} \times 2 \\
& =\frac{5}{12}-\frac{2}{12} \\
& =\frac{3 \div 3}{12 \div 3} \\
& =\frac{1}{4}
\end{aligned}
$$

3. Estimate, then calculate each operation. Reduce your answer if necessary. (6 marks)

4. This week, Mark practiced piano for $2 \frac{1}{2}$ hours, played soccer for $5 \frac{1}{4}$ hours and talked on the phone for $1 \frac{1}{3}$. What was the total amount of time spent on these activities? Reduce your answer if necessary. (3 marks)

7N5.15
Mull. of $2: 2,4,6,8,10$ (12, ..
mull. of $4: 4,8(12), 16, \ldots$
molt. of $3: 3,6,9,(12), \ldots$

$$
\left.\begin{array}{l}
=8+\frac{13}{12} \\
=8+1 \frac{1}{12} \\
=9 \frac{1}{12}
\end{array} \text { He spent } \begin{array}{c}
\text { qi } \\
\text { these } \\
\text { then } \\
\text { activities }
\end{array}\right\}
$$

5. Find the answer and be sure to put your fraction in lowest terms.

Mull. of 9: 9:827, $36, \ldots$
Mut of 6: $6,12(1), 36, \ldots$

$$
\text { 8) } \frac{x^{\frac{x}{4}} 1 \times 5}{1 \times 5}=\frac{15}{5}+1 \frac{1}{5}=1+\frac{16}{5}=1+3 \frac{1}{5}=4 \frac{1}{5}
$$

7N5.13
$\&$
7N5.14

$$
\text { C) } \frac{2^{\frac{x^{4}}{4}}}{1 \times 4}=\frac{8}{4}-\frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}
$$

$$
\begin{aligned}
& { }_{x} \underset{x}{0}
\end{aligned}
$$

