Grade 9 Math - Section 1.1
Name: \qquad

1. Find each square root:
A. $\sqrt{64}=8$
B. $\sqrt{49}=7$
c. $\sqrt{25}=5$
2. What is the square of each number?
A. $\quad 9 \Longleftrightarrow 81$

B. \quad| 2 |
| :--- |
| \Longrightarrow |

3. Calculate the number whose square root is: $\sqrt{?}=4$ * do the inverse to
A. $4^{2}=16$ work backwards
B. $\quad{ }_{6}^{2}=36$
c. $\quad 10^{2}=100$
4. Is 40 a perfect square? Explain why or why not.

40 is MOT a perfect square because:
(1) you cannot multiply a number by itself to get 40 the square root of 40 is an IRRATIONAL number.
5. Determine the value of each square root.
a) $\sqrt{\frac{225}{49}}=\frac{15}{7}$
b) $\sqrt{\frac{9}{25}}=\frac{3}{5}$
*reduce, then square root
c) $\sqrt{\frac{8}{98} \div 2}=\sqrt{\frac{4}{49}}=\frac{2}{7}$
d) $\sqrt{6.76}$
e) $\sqrt{327.61}=18.1$
f) $\sqrt{0.0225}=0.15$
$=2.6$
6. Calculate the number whose square root is:
a) $\left(\frac{5}{7}\right)^{2}=\frac{5}{7} \times \frac{5}{7} \quad$ b) $(1.6)^{2}=2.56 \quad$ c) $(0.92)^{2}=0.8464$ $=\frac{25}{49}$
7. Determine if each number below is a perfect square. Show your workings.

$$
\begin{array}{l|l|l}
2.89 \\
\sqrt{2.89}=1.7 & \begin{array}{c}
\frac{2: 2}{50}=\frac{1}{50}=\frac{1}{25} \\
\text { Yes }
\end{array} & \begin{array}{c}
\frac{0.00}{5} \times \frac{1}{5}=\frac{1}{25} \\
\text { yes!. }
\end{array} \\
& & \text { NO }
\end{array}
$$

8. The area of a square garden is $12.25 \mathrm{~m}^{2}$.
a) Determine the perimeter of the garden.

$$
\begin{aligned}
\text { Side length } & =\sqrt{\text { Area }} \\
& =\sqrt{12.25} \\
& =3.5 \mathrm{n}
\end{aligned}
$$

b) The owner decides to put a gravel pathway around the garden. This reduces the area of the garden by $4.96 \mathrm{~m}^{2}$. What is the new side length of the garden?

$$
\left\{\begin{array}{l}
\text { Sew Area }=12.25-4.96=7.29 \mathrm{~m}^{2} \\
\text { Side length }=\sqrt{\text { Area }}=2.7 \mathrm{~m}
\end{array}\right.
$$

