Grade 9 Math – Section 1.1

Name:

Find each **square root**:

A.
$$\sqrt{64} = 8$$

 $\sqrt{64} = 8$ B. $\sqrt{49} = 7$ C. $\sqrt{25} = 5$

2. What is the **square** of each number?

B. 6 36

Calculate the number whose square root is: $\sqrt{?} = 4$ * do the inverse to Work backwards

A. $4^2 = 16$ B. $6^2 = 36$ C. $10^2 = 100$ 3.

Is 40 a perfect square? Explain why or why not.

- 40 is NOT a perfect square because:

 O you cannot multiply a number by itself to get 40
- 1 the square root of 40 is an IRRATIONAL humber.
- Determine the value of each square root.

a)
$$\sqrt{\frac{225}{49}} = \frac{15}{7}$$

a) $\sqrt{\frac{225}{49}} = \frac{15}{7}$ b) $\sqrt{\frac{9}{25}} = \frac{3}{5}$ c) $\sqrt{\frac{8}{98}} = \frac{2}{7}$ c) $\sqrt{\frac{8}{98}} = \frac{2}{7}$

d)
$$\sqrt{6.76}$$

e)
$$\sqrt{327.61} = 18.1$$
 f) $\sqrt{0.0225} = 0.15$

f)
$$\sqrt{0.0225}$$
 2 0.15

= 2.6

Calculate the number whose square root is:

a)
$$\left(\frac{5}{7}\right)^2 = \frac{5}{7} \times \frac{5}{7}$$

= 25

a)
$$\left(\frac{5}{7}\right)^2 = \frac{5}{7} \times \frac{5}{7}$$
 b) $\left(1.6\right)^2 = 2.56$ c) $\left(0.92\right)^2 = 0.8464$

7. Determine if each number below is a **perfect square**. Show your workings.

a)
$$2.89$$

 $\sqrt{2.89} = 1.7$
Yes

b)
$$\frac{2}{50}$$
:2 $\frac{1}{2}$ 5 $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{2}$ 5 $\frac{1}{2}$ 5 $\frac{1}{2}$ 5.

- The area of a square garden is 12.25 m².
- Determine the **perimeter** of the garden.

The owner decides to put a gravel pathway around the garden. This reduces the area of b) the garden by 4.96 m². What is the new side length of the garden?