Name:

Key Terms

Angle - the space (usually measured in degrees) between two intersecting lines or surfaces at or close to the point where they meet.

Arc - A segment of the circumference of a circle. A Major Arc is the longer of the two arcs between two points on a circle. A Minor Arc is the shorter of the two arcs between two points on a circle.

Bisector - A line that divides a line segment or an angle into two equal parts.

Central Angle - An angle whose arms are radii of a circle.

Chord - A line segment that joins two points on a circle.

Diameter - the distance across a circle, measured through its centre; or the line segment that joins two points on the circle and passes through the centre.

Inscribed Angle - An angle in a circle with its vertex and the endpoints of its arms on the circle.

Line Segment - The part of a line that passes as close as possible to a set of plotted points.

Perpendicular - Lines or line segments that intersect at right angles.
Perpendicular bisector - the line that is perpendicular to a line segment and divides it into two equal parts. A perpendicular bisector intersects a line segment at 90°.

Point of Tangency - the point where the tangent intersects the circle.

Radius - the distance or line segment from the centre of a circle to any point on the circle.

Tangent - a line that intersects a circle at only one point.

Geometry Introduction
There are five different kinds of angles. Can you name them and draw them?

Name	Sketch	Explanation
Acute	less than 90°	
Obtuse		greater than 90° but less than 180° 90°
Right		180°
Straight	Greater than 180°.	
Reflex		

There are four different kinds of triangles (based on side length). Can you identify them?

Name	Sketch	Explanation
equalateral	a	all sides and all angles are equal.
Right	one angle is 900	
Scalene	No sides are equal	

Section 8.1: Properties of Tangents to a Circle

D Tangent-Radius Property
A tangent to a circle is perpendicular to the radius at the point of tangency.
That is, $\angle \mathrm{APO}=\angle \mathrm{BPO}=90^{\circ}$

Example 1: (Determining the measure of $<$ ABO knowing the Tangent-Radius property)

The measure of $\angle O A B=90^{\circ}$,
therefore the $\angle \mathrm{ABO}=27^{\circ}$.
(Hint: What does the measure of all 3 angles in a triangle equal?)

$$
\begin{gathered}
180-(90+63) \\
180-153 \\
270
\end{gathered}
$$

Example 2: Show work below to solve for side d. (Determining the length of an unknown side of a right triangle knowing the Tangent-Radius property)

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& b^{2}=20^{2}-15^{2} \\
& b^{2}=400-225 \\
& \sqrt{b^{2}}=1175 \\
& b=13.2
\end{aligned}
$$

Practice

1. Point O is the center of a circle and $A B$ is tangent to the circle. In $\mathrm{OAB}, \angle \mathrm{AOB}=55^{\circ}$. Determine the measure of $\angle \mathrm{OBA}$.

$$
\begin{aligned}
& \underbrace{\angle O B A:}_{180-(90+55)} \\
= & 180-145 \\
= & 35^{\circ} \\
& 0_{0}^{\circ} \angle O B A=35^{\circ}
\end{aligned}
$$

2. Find x and y.
x:

$$
180-(90+57)
$$

$$
=180-(147)
$$

$$
=33^{\circ}
$$

y is

$$
\begin{aligned}
& 180-(90+35) \\
&= 180-125 \\
&= 55^{\circ} \\
& \quad 0_{00}^{0} \angle y=55^{\circ}
\end{aligned}
$$

3. Find the length of side r.

$$
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
b^{2} & =10^{2}-8^{2} \\
b^{2} & =100-64 \\
\sqrt{b^{2}} & =\sqrt{36} \\
b & =6 \quad 8
\end{aligned}
$$

4 An airplane, A , is cruising at an altitude of 9000 m.
A cross section of Earth is a circle with radius approximately 6400 km .
A passenger wonders how far she is from a point H on the horizon she sees outside the window.
Calculate this distance to the nearest kilometre.
KHDMDCM

$$
9000 \mathrm{~m}=9 \mathrm{~km}
$$

$c=6400+9$
$=6409 \mathrm{~km}$

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& b^{2}=6409^{2}-6400^{2} \\
& b^{2}=41075281-40960000 \\
& \sqrt{b^{2}}=\sqrt{115281} \\
& b=339.53
\end{aligned}
$$

$$
\begin{aligned}
& z: \\
= & 180-(90+30) \\
= & 180-120 \\
= & 60^{\circ} \\
\therefore & \angle z=60^{\circ}
\end{aligned}
$$

So, $x=10.8$
So, $y=10.4$

Perpendicular to Chord Property 1 The perpendicular from the centre of a circle to a chord bisects the chord; that is, the perpendicular divides the chord into two equal parts.
Point O is the centre of the circle.
When $\angle O C B=\angle O C A=90^{\circ}$,

then $\mathrm{AC}=\mathrm{CB}$

Perpendicular to Chord Property 3
A line that joins the centre of a circle and the midpoint of a chord is perpendicular to the chord.
When O is the centre of a circle and $\mathrm{EG}=\mathrm{GF}$, then $\angle \mathrm{OGE}=\angle \mathrm{OGF}=90^{\circ}$

Example 1: O is the center of the circle. $A B$ is the diameter and measures 26 cm . $O E$ is ${ }^{C} 1310$

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& b^{2}=13^{2}-10^{2} \\
& b^{2}=169-100 \\
& \sqrt{b^{2}}=\sqrt{69} \\
& b=8.31 \text { 4-lengthof } \\
& \text { ce }
\end{aligned}
$$

 10 cm and perpendicularly bisects $C D$. What is the length of CD?

$$
\begin{aligned}
& d=26 \\
& r=26 \div 2=13
\end{aligned}
$$

Example 2: A horizontal pipe has a circular cross section, with center O. Its radius is 30 cm . Water fills less than half the pipe. The surface of the water, $A B$, is 24 cm wide. Determine the maximum depth of the water, CD.
OC:

$$
b^{2}=c^{2}-a^{2}
$$

$$
b^{2}=30^{2}-12^{2}
$$

$$
b^{2}=900 \cdot 144
$$

$$
\sqrt{b^{2}}=\sqrt{756}
$$

$$
b=27.5
$$

Example 3: The radius of the circle is 16 cm . $E D$ is 6 cm . What is the length of $A E$?

$$
\begin{align*}
& b^{2}=c^{2}-a^{2} \\
& b^{2}=16^{2}-10^{2} \tag{10}\\
& b^{2}=256-100 \\
& \sqrt{b^{2}}=\sqrt{156} \quad b=12.5
\end{align*}
$$

Example 4: The radius of the circle is 18 m . The radius $C D$ is perpendicular to the

$$
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
b^{2} & =18^{2}-10^{2} \\
b^{2} & =324-100 \\
\sqrt{b^{2}} & =\sqrt{224} \\
b & =14.97
\end{aligned}
$$

$H J_{2}$: Example 5: Determine the value of x.

$$
\begin{aligned}
b^{2} & =c^{2}-a^{2} \\
b^{2} & =11^{2}-5^{2} \\
b^{2} & =121-25 \\
\sqrt{b^{2}} & =\sqrt{96} \\
b & =9.8
\end{aligned}
$$

Example 6: Determine the value of x.

$$
\begin{aligned}
& x \\
& b^{2}=c^{2}-a^{2} \\
& b^{2}=8^{2}-5^{2} \\
& b^{2}=64.25 \\
& \sqrt{b^{2}}=\sqrt{39} \\
& b=6.2
\end{aligned}
$$

$$
\begin{aligned}
& d=16 \\
& r=16 \div 2=8
\end{aligned}
$$

Example 7: Water is flowing through a pipe with a radius of 16 cm . The maximum depth
$b^{2}=16^{2}-6^{2}$ of the water is 10 cm . What is the width, PQ , at the surface of the water?

$$
\begin{aligned}
b^{2} & =256-36 \\
\sqrt{b^{2}} & =\sqrt{220} \\
b & =14.8
\end{aligned}
$$

Example 8: A square has a side length of 5 cm . It is inscribed in a circle, center. What is the length of the radius of the circle?
find the diameter:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+5^{2} & =c^{2} \\
25+25 & =c^{2} \\
\sqrt{50} & =\sqrt{c^{2}} \\
c & =7.1
\end{aligned}
$$

Section 8.3: Properties of Angles in a Circle

D Central Angle and Inscribed Angle Property In a circle, the measure of a central angle subtended by an arc is twice the measure of an inscribed angle subtended by the same arc.

$$
\begin{aligned}
& \angle \mathrm{POQ}=2 \angle \mathrm{PRQ}, \text { or } \\
& \angle \mathrm{PRQ}=\frac{1}{2} \angle \mathrm{POQ}
\end{aligned}
$$

Example 1: $\angle B D C$ is an inscribed angle and $\angle B E C$ is a central angle. They are subtended by the same arc. $\angle \mathrm{BDC}=38^{\circ}$. What is the measure of $\angle \mathrm{BAC}$ and $\angle B E C$?

$$
\begin{aligned}
& \angle B E C ? \\
& \angle B A C=38^{\circ} \\
& \angle B E C=2 \times 38^{\circ} \\
&=76^{\circ}
\end{aligned}
$$

Example 2: \angle ROT is a central angle subtended by arc RT. $\angle \mathrm{RST}$ is an inscribed angle subtended by the same arc. What is the measure of $\angle \mathrm{RST}$?

$$
\angle R S T=86 \div 2=43^{\circ}
$$

Example 3: $\angle \mathrm{CDB}=50^{\circ}$. $\mathrm{CB}=9 \mathrm{~cm}$ and $\mathrm{CA}=6 \mathrm{~cm}$. Can you use the Pythagorean relationship to find the length of BA? Justify your answer.
Since, $\triangle A B C$ is NOT a right triangle we cannot use Pythagorean.

Inscribed Angles Property
In a circle, all inscribed angles subtended by the same arc are congruent.

$$
\angle \mathrm{PTQ}=\angle \mathrm{PSQ}=\angle \mathrm{PRQ}
$$

Example 4: $\angle \mathrm{BCD}$ is an inscribed angle. $\angle \mathrm{BCD}=29^{\circ}$ ded hat is the measure of $\angle B A D$ and $\angle B E D$?
$\angle B C D=\angle B A D=\angle B E D=29^{\circ}$ they are all subtended by the same minor
 arc BD.
Example 5: $\angle \mathrm{RSU}$ and $\angle \mathrm{RTU}$ are inscribed angles subtended by the same arc. What is the measure of $\angle \mathrm{RTU}, \angle \mathrm{SRT}$ and $\angle \mathrm{UQT}$?

$$
\angle R T U=21^{\circ}
$$

$$
\begin{aligned}
\angle U Q T & =180-(74+21) \\
& =180-99 \\
& =85^{\circ}
\end{aligned}
$$

Example 6: By the inscribed angle property, the measure of $\angle \mathrm{WXZ}$ is \qquad 18 ${ }^{\circ}$, and the measure of $\angle X Z Y$ is 25°.

Angles in a Semicircle Property All inscribed angles subtended by a semicircle are right angles.
Since $\angle A O B=180^{\circ}$, then $\angle \mathrm{AFB}=\angle \mathrm{AGB}=\angle \mathrm{AHB}=90^{\circ}$

Example 7: Point C is the center of the circle. The central \angle is ACD . Chord $\mathrm{BD}=12.5$ cm . The radius is 8 cm .
a) What is the measure of $\angle A C D$? $=180^{\circ}$
b) What is the measure of $\angle A B D ?=90^{\circ}$

$$
d=8 \times 2=16
$$

c) What is the length of chord $A B$?

$$
\begin{aligned}
& b^{2}=c^{2}-a^{2} \\
& b^{2}=16^{2}-12.5^{2} \\
& b^{2}=256-156.25 \\
& \sqrt{b^{2}}=\sqrt{99.75} \\
& b=9.99 \\
& \text { S0 chord } A B=9.99
\end{aligned}
$$

